SHORT COMMUNICATION

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1991). C47, 2514

Iminodiacetonitrile – space group correction. By F. H. HERBSTEIN, Department of Chemistry, Technion – Israel Institute of Technology, Haifa, Israel 32000

(Received 20 January 1991; accepted 2 May 1991)

Abstract

The crystals of iminodiacetonitrile are not monoclinic, as reported by Kaida, Minemoto, Shimizu, Sonoda, Miki & Kasai [*Acta Cryst.* (1990), C**46**, 2269–2270] but orthorhombic. The revised crystal data are a = 11.836 (3), b = 5.345 (2), c = 7.821 (2) Å, space group $Cmc2_1$ (No. 36), Z = 4, molecular symmetry C_s -m.

The crystal structure of iminodiacetonitrile was reported in space group $P2_1$, Z = 2 (Kaida, Minemoto, Shimizu, Sonoda, Miki & Kasai, 1990); approximate C_s symmetry of the molecule was noted. Application of *TRACER* (Lawton, 1969) to the monoclinic cell parameters showed that the true symmetry was *C*-centred orthorhombic (interaxial angles were equal to 90° well within experimental error). Transformation of atomic coordinates showed

Fig. 1. Projection of molecular packing viewed along [001] in the orthorhombic cell (adapted from Fig. 2 of Kaida *et al.*). The monoclinic cell (with only some of the 2_1 axes inserted) is denoted by \mathbf{a}_m , \mathbf{c}_m . The orthorhombic cell, with symmetry elements of space group $Cmc2_1$ inserted, is denoted by \mathbf{a}_o , \mathbf{b}_o . The labels are for the atoms of Table 1 of Kaida *et al.*, while our reference molecule (coordinates in Table 1) is darkened.

Table 1. Atomic coordinates (numbering of Kaida et al.) in the orthorhombic cell shown in Fig. 1

Atoms N(1) and H(1) lie on the mirror plane at x = 0. The z_o coordinate of N(1) has been fixed at 0.75 (it seems that this coordinate was refined, unjustifiably, in the original study). Round brackets indicate e.s.d.'s taken from Kaida *et al.*, who report e.s.d.'s of 4–6 × 10⁻⁴ for C, N and 5–8 × 10⁻³ for H; square brackets show one half of the range of symmetry-related coordinates.

The transformation equations between the coordinates below and those given by Kaida *et al.* $(x_{\kappa} etc.)$ are: $x_o = \frac{1}{2}(x_{\kappa} - \frac{1}{2})$; $y_o = z_{\kappa} - \frac{1}{2}(x_{\kappa} - \frac{1}{2})$; $z_o = 1 - y_{\kappa}$.

	xo	y _o	Zo
N(1)	0	0.1276 (4)	0.75 (-)
C(2)	0.1037 [0]	0.0952 [7]	0.6554 [3]
C(4)	0.1290 [0]	0.2937 [1]	0.5283 [3]
N(6)	0.1468 [5]	0.4533 [2]	0.4356 [2]
H(1)	0	0.266 (8)	0.799 (5)
H(2A)	0.181 [4]	0.096 [12]	0.735 [9]
H(3A)	0.100 [3]	-0.046 [0]	0.595 [1]

that the space group was $Cmc2_1$, the C_s symmetry of the molecule now being exact. The relation between monoclinic and orthorhombic cells is shown in Fig. 1. The *c*-glide plane of $Cmc2_1$ requires the systematic extinction of reflections *hk*0 with *k* odd in the monoclinic indexing; this is confirmed for 21 reflections of this type by reference to SUP 53031. The symmetry-averaged atomic coordinates in the orthorhombic cell in standard orientation are given in Table 1. Further refinement is not necessary as both revised and original cells are non-centrosymmetric (Schomaker & Marsh, 1979).

References

- KAIDA, S., MINEMOTO, H., SHIMIZU, T., SONODA, N., MIKI, K. & KASAI, N. (1990). Acta Cryst. C46, 2269–2270.
- LAWTON, S. L. (1969). TRACER. Northwestern University, Evanston, Illinois, USA.
- SCHOMAKER, V. & MARSH, R. E. (1979). Acta Cryst. B35, 1933-1934.